Data structure general format

Node declaration- (think hard about the node. So visualise without lines)

Struct [dataType]Node {
//data stored in Node eg- Object/value
//pointer (node link another node same node type???)

}i

NOTE: (ask yourself)

e Does node link to another node(s)? Often yes
e Does node store data? Always yes

Data structure declaration- (think hard about how to add new node in instantiate structure)

[Contains method to LINK up node such as AddAnotherNodeTo]

Class [dataType] {

public:

AddAnotherTo[DataType] //Instantiated data struct add node
private:
//Root node pointer (root node link to another same node type)

b

NOTE: (ask yourself)

e How to add another node? ANSWER is dependent on data structure property
o BST > Sorting process. So go left go right etc
o Stack = Push




Arrow notation:

[Pointer] -> [Data member] OR (*Pointer) .DataMember

So

[Pointer] -> [Data member] = [Pointer2] -> [Data member]

Think of it as referring to [data member] and assigning [pointer2] data member

Understanding Big-O cheat sheet:

Data Structure Time Complexity

Average Worst

Access Search Insertion Deletion Access Search Insertion Deletion
Array, B®] o] o] o] @@ lom| lom] [om]

Access: (related to searching) How does to access an *element @ a location in the data structure?
Search: How to loop through a data structure? Similar to access but not ever structure can access at point
Insertion: How to add an *element to a data structure

Deletion: How to add an *element to data structure

Worst means: Assume element to access/search is at the end of the data structure

So in an array, obviously accessing an element of an array is quickest O(1)

But searching is slow because we need to iterate through each element one by one

*Element/Node

Why Big(0O) deceptive:



@R s It me or Is that
corvus 518
you're reading it wrong. insertion of a linked-list is always 0(1) . see
you're mixing up "indexing" and "insertion"

in other words, finding the proper location is of 0(n), and insert a new node there is of 0(1)

Olaf
problem with big O and stuff is they need to be more specific about the complexity of what tbh

can be so confusing and misleading indeed, | agree

if you dont write anything about complexity of what, you have to assume it's whatever relevant factor has worst complexity,
and they're not doing that

&1

no different from saying any sorting algorithm is O(1) because that's how long it takes to return the pointer

corvus 518

that's the reason we have formal education to tell students about "what it usually means” @

Olaf
| go to a great top 10 school and they don't specify ever

Random260
When you have to thing of the most efficient method for insertion you need to factor in searching + insertion?

The insertion operation itself is O(l), but the traversal to get to the point where you want
to insert is going to be O(n) worst case

Important: Consider in combination insertion + searching

Just realised it is. So for most cases if you want to inserts lets sa

actually "add" insertion + searching. If only there was simple maths to compare

STL algorithms vs Raw loops?

Algorithm looks nicer
Find() is for single thing

Loop for iterating through all elements



